Oxygenated 4-Methylidene Sterols from the South China Sea Sponge Theonella swinhoei

by Hong-Jun Zhang^a)^b)^c), Yang-Hua Yi*^b), and Hou-Wen Lin*^a)

^a) Laboratory of Marine Drugs, Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, P. R. China (phone/fax: +86-21-65585154; e-mail: franklin67@126.com)
^b) Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China (phone: +86-21-65384988; fax: +86-21-65483662; e-mail: yiyanghua@hotmail.com)
^c) Hospital of PLA Troops 95746, Qionglai 611531, P. R. China

Two new O-bearing 4-methylidene sterols, 9α -hydroxy-15-oxoconicasterol (1) and 8β -hydroxy-Bnorconicasta- 6α -aldehyde (2), were isolated from the EtOH extract of the marine sponge *Theonella swinhoei* collected from the South China Sea. Their structures were elucidated by spectroscopic data and comparison with known compounds. In addition, spectroscopic data reported for the known 4methylidene sterol 7α -hydroxyconicasterol (3) were revised.

Introduction. – Marine sponges of the genus *Theonella* have attracted a great deal of attention for their bioactive secondary metabolites, including polyoxygenated aliphatic compounds, unusual cyclic peptides, macrolides, polyethers, polyketides, alkaloids, and sterols [1-3]. Interestingly, the sterols isolated from the genus *Theonella*, mainly from *T. swinhoei*, were found possessing unique 4-methylidene moieties [3-8], and some of them also have 8,14-seco-frameworks [7][8]. As part of ongoing investigation on bioactive chemical constituents of marine sponges collected from the South China Sea, studies on the marine sponge *T. swinhoei* led to the isolation and determination of two new O-bearing 4-methylidene sterols, 9α -hydroxy-15-oxoconicasterol (1) and 8β -hydroxy-B-norconicasta- 6α -aldehyde (2), together with a known 4-methylidene sterol 7α -hydroxyconicasterol (3), from the EtOH extract of this sponge. Here, we report the details of isolation and structure elucidation of these compounds.

© 2010 Verlag Helvetica Chimica Acta AG, Zürich

Results and Discussion. – The EtOH extract of the marine sponge *T. swinhoei* was subjected to solvent partition, column chromatography (CC), or vacuum liquid chromatography (VLC) (on SiO₂, *ODS*, and *Sephadex LH-20*), and RP-HPLC to afford two new O-bearing 4-methylidene sterols, 9α -hydroxy-15-oxoconicasterol (1) and 8β -hydroxy-B-norconicasta- 6α -aldehyde (2), and a known 4-methylidene sterol, 7α -hydroxyconicasterol (3). Their structures were elucidated by HR-ESI-MS, and 1D-and 2D-NMR techniques, including ¹H,¹H-COSY, HSQC, HMBC, and NOESY (or ROESY).

Compound 1 was isolated as colorless needles from CHCl₃, and its molecular formula was established as $C_{29}H_{46}O_3$ from HR-TOF-ESI-MS (m/z 465.3340 ([M+ Na]⁺)) and ¹³C-NMR data. Seven degrees of unsaturation implied by the formula were ascribed to four rings, two C=C bonds (δ (C) 152.8, 147.7, 141.7, and 103.9), and one C=O group (δ (C) 208.4). The ¹H-NMR spectrum exhibited signals for six Me groups $(\delta(H) 0.71 (s), 0.78 (d, J = 6.7), 0.80 (d, J = 6.8), 0.85 (d, J = 6.8), 0.97 (s), and$ 1.02 (d, J = 6.2), two olefinic H-atoms (δ (H) 5.13 (br. s) and 4.69 (br. s)), and one Obearing CH group (δ (H) 4.03 (dd, J=12.0, 5.2)). The ¹³C-NMR and DEPT spectra showed 29 signals including those of six Me, ten CH₂, six CH groups, and seven quaternary C-atoms (Table). The ¹H- and ¹³C-NMR spectra of compound 1 were characteristic of an O-bearing sterol [9], which was confirmed by extensive 2D-NMR spectroscopic analysis. The strong HMBCs from the six Me groups to associated Catoms indicated three typical fragments of a steroid corresponding to two angular Me groups and nearby C-atoms, and the partial side chain (Fig. 1). The HMBCs from $CH_2(29)$ to C(3), C(4), and C(5), and the allylic ¹H, ¹H-COSY correlations of $CH_2(29)$ with H-C(3) and H-C(5) confirmed the existence of exocyclic CH₂ group at C(4). The ¹H,¹H-COSY correlations of H_{β}-C(2) (δ (H) 1.39 (qd, J=12.0, 4.0)) with $H_a - C(1)$ and H - C(3) validated the assignment of ring A. The ¹H, ¹H-COSY correlations $H-C(5)/CH_2(6)$, $CH_2(6)/CH_2(7)$, and $CH_2(11)/CH_2(12)$, and the HMBCs from CH₂(7) to C(5), C(6), C(8), C(9), and C(14), and from H_{β}-C(12) to C(9), allowed the establishment of rings B and C. The ring D was established by the ${}^{1}H,{}^{1}H$ -COSY correlation $CH_2(16)/H - C(17)$, and the HMBCs from $CH_2(16)$ to C(13), C(14), C(15), C(16), and C(17). The ¹H,¹H-COSY correlation $CH_2(22)/CH_2(23)$ provided the final connection of the alkyl side chain.

Fig. 1. Selected HMBC (— and \rightarrow) and COSY (—) correlations of 1 and 2. Dotted lines indicate bonds without COSY correlations

	TADIE: Data of H-IV	UM 000 IN VM	c ana - C-ivinty at 130 intra for 1, 2,	מעמ ש וע רחרו	з. о ш ррш, л ш нъс	
Position	1		7			
	δ(H)	$\delta(C)$	<u>δ(H)</u>	δ(C)	φ(H)	$\delta(C)$
1	$1.99-2.05 (m, H_a),$	29.6 (t)	$1.48 - 1.52 \ (m, H_a),$	37.3 (t)	$1.36 - 1.41 \ (m, H_{a}),$	36.5 (t)
¢	$1.47 - 1.52 (m, H_{\beta})$ 2 07 - 2 07 (m, H)	32 4 (1)	$1.74 - 1.80 (m, H_{\beta})$ 2.07 - 7.06 (m, H)	326(1)	$1./4 - 1./8$ (<i>m</i> , H _{\beta}) 1 90 - 7 04 (<i>m</i> , H)	33 (1)
1	$1.39 (ad, J = 12.0, 4.0, H_{s})$	(1) 1.70	$1.49 - 1.54 \ (m, H_a)$		1.35 - 1.42 (<i>m</i> , H _a)	
3	4.03 (dd, J = 12.0, 5.2)	72.8 (d)	$4.14 \ (dd, J = 10.3, 5.0)$	72.9 (d)	$4.05 \ (dd, J = 10.4, 5.2)$	73.3 (d)
4		152.8(s)		148.0(s)		152.6(s)
5	2.62 (br. d, J = 12.0)	41.4(d)	2.66 (br. $d, J = 12.6$)	51.9(d)	2.34 (br. d, J = 13.6)	42.3(d)
9	$1.65 - 1.69 (m, H_{\alpha}),$	24.5(t)	9.78 (d, J = 3.1)	205.0(t)	1.77 (dt, J = 13.8, 2.4),	31.3(t)
	$1.49 - 1.55 \ (m, H_{\beta})$				$1.60 \ (td, J = 13.8, \ 3.0, \ H_{\beta})$	
L	$2.04-2.08 \ (m, H_{\alpha}),$ $4.00 \ (ddd \ I = 14.4 \ 4.2 \ 2.5 \ H_{\alpha})$	22.2 (t)	$2.61 \ (dd, J = 12.6, 3.1)$	60.1~(d)	4.65 (br. $t, J = 2.8$)	66.5 (d)
×	=	(s) ((s)	I	87.2 (s)	1	127.6 (s)
0	1	74.5(s)	1.74 - 1.78 (m)	(p) = 0	2.27 (td. $J = 10.2$, 2.4)	(P) 8:57
10	1	44.3 (S)		44.6(s)		39.7(s)
11	$1.64 - 1.68 \ (m, H_{c}),$	28.2(t)	$1.56 - 1.59 \ (m, H_{\alpha}),$	19.7(t)	$1.86 - 1.92 \ (m, H_{a}),$	19.8(t)
	1.97 $(td, J = 14.8, 3.6, H_{\beta})$	~	1.27 - 1.33 (m, H _B)		1.43 - 1.50 (m, H ^B)	
12	$1.57 - 1.63 \ (m, H_{a}),$	33.4(t)	1.43 - 1.47 (m, H _a),	36.4(t)	1.14 - 1.20 (m, H _a),	36.9 (t)
	$2.01 - 2.05 \ (m, H_{B})$		$1.74 - 1.78$ (m, H_{B})		$1.97(dt, J = 12.4, \overline{3.3}, H_{\beta})$	
13		43.2(s)	L J	44.8 (s)	Ĩ	43.0(s)
14	1	141.7(s)	$1.59 \ (dd, J = 9.8, 4.2)$	58.1 (d)	1	148.3(s)
15	I	208.4(s)	$1.90 - 1.95 \ (m, H_a),$	22.0(t)	$2.33 - 2.41 \ (m, H_a),$	25.1(t)
			$1.62 - 1.68 \ (m, H_{eta})$		$2.33 - 2.41 \ (m, H_{eta})$	
16	$2.42 \ (dd, J = 18.9, 7.5, H_{a}),$ $2.06 \ (dd, J = 18.9, 11.0, H_{a})$	42.5 (t)	$1.89 - 1.94 \ (m, { m H}_a), \ 1.34 - 1.40 \ (m, { m H}_a)$	29.6 (t)	$1.86 - 1.92 \ (m, H_{lpha}), 1.38 - 1.46 \ (m, H_{ ho})$	26.9 (t)
17	1.51 - 1.58 (m)	50.4(d)	1.43 - 1.48 (m)	56.9(d)	1.17 - 1.21 (m)	56.3 (d)
18	(s) (s)	17.2(a)	0.87(s)	22.0(a)	0.85 (s)	17.9(a)
19	0.71(s)	16.3 (q)	0.63 (s)	14.9(q)	0.57(s)	12.3 (q)
20	1.55 - 1.61 (m)	34.6 (d)	1.33 - 1.38 (m)	35.0 (d)	$1.44 - 1.50 \ (m)$	33.5 (d)
21	$1.02 \ (d, J = 6.2)$	19.2(q)	$0.89 \ (d, J = 6.6)$	18.6(q)	0.94~(d, J = 6.8)	19.0(q)
22	$1.27 - 1.33 \ (m, H_{\rm a}),$	33.8(t)	1.31 - 1.37 (<i>m</i> , H _a),	34.1(t)	$1.34 - 1.38 \ (m, H_{a}),$	34.5(t)
	$1.13 - 1.18 (m, H_b)$		1.03 - 1.11 (<i>m</i> , H _b)		1.13 - 1.18 (m, H _b)	
23	1.23 - 1.28 (m, H _a),	29.8 (t)	1.31 - 1.37 (m, H _a),	30.5 (t)	1.21 - 1.25 (m, H _a),	30.0(t)
	$1.06 - 1.11 \ (m, H_b)$		$1.06 - 1.12 \ (m, H_b)$		$1.08 - 1.14 \ (m, H_b)$	
24	1.18 - 1.24 (m)	38.8(d)	1.16 - 1.22 (m)	38.9 (d)	1.19 - 1.23 (m)	38.9 (d)
27	(m) 00.1 - 67.1	52.4(a)	(m) cc.1 - 8+.1	32.4(d)	(m) 0C.1 - 1C.1	32.4(a)
26 27	0.85 (d, J = 6.8)	20.1 (q)	0.85 (d, J = 6.8)	20.2 (q)	$0.86 \ (d, J = 6.8)$	20.2 (q)
17	0.50(a, J = 0.5)	(b) 7.91	0.80(a, J = 0.8)	(b) c.01	0.51(a, f = 0.5)	15.2 (q)
23	0.78 (a, J = 0.7) 5.13 (br. s, H _a), 4.69 (br. s, H _b)	103.9 (t)	0.77 (a, J = 0.8) 5.08 (br. s, H _a), 4.52 (br. s, H _b)	103.9 (t)	0.79 (a, J = 0.0) 5.10 (br. s, H _a), 4.62 (br. s, H _b)	102.8 (q)

1122

Helvetica Chimica Acta – Vol. 93 (2010)

The coupling constants between H–C(3) (4.03 (*dd*, J = 12.0, 5.2)) and CH₂(2), and the NOESY correlations of H–C(3) with H_a–C(1) and H–C(5), indicated that H–C(3) was axial. The NOESY correlations H–C(5)/H_a–C(7), H_β–C(6)/Me(19), and Me(19)/H_β–C(11) implied that HO–C(9) was *a*-oriented (*Fig.* 2), which was further supported by the *syn*-axial γ -effects of HO–C(9) [10]. Compared with the C(9)-unsubstituted compound **4**, upfield shifts of 7.3, 7.9, and 5.1 ppm for C(1), C(5), and C(7), respectively, of compound **1** were observed [7]. The configuration of C(24) was determined by comparison of ¹³C-NMR data with the epimeric steroidal side chain [11]. On the basis of the foregoing analysis, compound **1** was determined as 9*a*hydroxy-15-oxoconicasterol.

Fig. 2. Key NOESY or ROESY correlations of 1 and 2

Compound 2 was obtained as colorless needles from CHCl₃, and its molecular formula, $C_{29}H_{48}O_3$, was deduced from HR-TOF-ESI-MS (m/z 467.3503 ($[M + Na]^+$)) and ¹³C-NMR data. This formula implied six degrees of unsaturation, which were assigned to four rings, one C=C bond (δ (C) 148.0, 104.0), and one aldehyde C=O group ($\delta(C)$ 205.0). The ¹H-NMR spectrum showed signals for six Me groups ($\delta(H)$ 0.63 (s), 0.77 (d, J = 6.8), 0.80 (d, J = 6.8), 0.85 (d, J = 6.8), 0.87 (s), and 0.89 (d, J = 6.8) 6.6)), two olefinic H-atoms (δ (H) 5.08 (br. s), 4.52 (br. s)), one O-bearing CH group $(\delta(H) 4.14 (dd, J = 10.3, 5.0))$, and one aldehyde H-atom $(\delta(H) 9.78 (d, J = 3.1))$. The ¹³C-NMR and DEPT spectra exhibited 29 signals including those of six Me, nine CH₂, and ten CH groups, as well as four quaternary C-atoms (Table). Three typical fragments of a steroid could also be established by the strong diagnostic HMBCs from the six Me groups to the nearby C-atoms (*Fig. 1*). The existence of an exocyclic CH_2 group at C(4) was verified by the HMBCs from $CH_2(29)$ to C(3), C(4), and C(5), and the allylic ¹H,¹H-COSY correlations between CH₂(29), and H-C(3) and H-C(5). The ¹H, ¹H-COSY correlations between $CH_2(2)$, and $CH_2(1)$ and H-C(3) allowed us to establish ring A. The ¹H,¹H-COSY correlations between H–C(7), and H–C(5) and H-C(6) indicated that the aldehyde group was connected to C(7). The HMBCs from H-C(7), H-C(9), $H_{\beta}-C(11)$, H-C(14), and $CH_{2}(15)$ to C(8), together with the ¹H,¹H-COSY correlations of H_{β} -C(11) with H-C(9) and H_{α} -C(12), confirmed the assignment of rings B and C. The ¹H,¹H-COSY correlations H-C(14)/H_a-C(15), $H_{\beta}-C(15)/H_{\alpha}-C(16)$, and $H_{\alpha}-C(16)/H-C(17)$ allowed the establishment of ring D. The ¹³C-NMR, HMBC, and ¹H,¹H-COSY data indicated that compound 2 possessed the same side chain as compound 1.

The β -orientation of HO-C(3) was determined by the coupling constants between axial H-C(3) (4.14 (*dd*, J = 10.3, 5.0)) and CH₂(2), and the ROESY correlations H-C(3) with H_a-C(1) and H-C(5). The ROESY correlations H-C(5)/H-C(6), H-C(7)/H_b-C(29), and H-C(7)/Me(19), suggested that the aldehyde group was α oriented (*Fig.* 2). The β -orientation of HO-C(8) was deduced from the upfield chemical shift of C(11) (δ (C) 19.7) and the lowfield chemical shift of Me(18) (δ (C) 22.0), which were due to the *syn*-axial γ -effect and δ -effect, respectively [10][12]. Therefore, compound **2** was elucidated as 8β -hydroxy-B-norconicasta- 6α -aldehyde.

Compound 3 was obtained as a white powder, and its molecular formula was found to be $C_{29}H_{48}O_2$ from ESI-MS (m/z 451.36 ($[M + Na]^+$), 467.35 ($[M + K]^+$)) and ¹³C-NMR data. The ¹H-NMR spectrum exhibited signals of six Me groups (δ (H) 0.57 (s), 0.79 (d, J = 6.8), 0.81 (d, J = 6.8), 0.85 (s), 0.86 (d, J = 6.8), and 0.94 (d, J = 6.8)),two olefinic H-atoms (δ (H) 5.10 (br. s), 4.62 (br. s)), and two O-bearing CH groups $(\delta(H) 4.05 (dd, J=10.4, 5.2), 4.65 (t, J=2.8))$. The ¹³C-NMR and DEPT spectra showed 29 signals including those of six Me, ten CH_2 , and nine CH groups, as well as of five quaternary C-atoms (*Table*). The C-atoms resonating at δ (C) 152.6, 148.3, 127.6, and 102.8 indicated the presence of two C=C bonds. The ¹H,¹H-COSY, HSQC, HMBC, and NOESY spectra displayed that compound **3** was a 4-methylidene sterol with a 7α hydroxy-8(14)-ene fragment, which was previously isolated from Hachijo marine sponge T. swinhoei [7]. The HO-C(3) was determined to be β -oriented from the vicinal coupling constants of H-C(3) (4.05 (dd, J=10.4, 5.2)), and the NOESY correlations of H–C(3) with H_a –C(1) and H–C(5). Although the ¹H-NMR data of compound **3** were very similar to the literature data, their ¹³C-NMR data exhibited a significant difference for C(7). The chemical shift of C(7) of compound 3 was 66.5, while in the literature it was reported as 79.9 ppm, implying that these two HO-C(7)had different configurations, which were consistent with the observed allylic 7a- and 7β -OH substituent effects, respectively [13][14]. By comparison with the ¹³C-NMR data of conicasterol (5), upfield shifts of 7.3 and 5.5 ppm for C(5) and C(9), respectively, of compound 3 were observed [7], which were ascribed to the syn-axial γ effects [10]. Therefore, HO-C(7) of compound **3** was determined as α -oriented, and HO-C(7) in the literature should be revised as β -oriented.

To the best of our knowledge, there were 17 4-methylidene sterols isolated from *T. swinhoei* and one from *T. conica*, unaccompanied by conventional sterols [3–8]. These 4-methylidene sterols were commonly oxygenated at C(3), C(7), or C(15), and almost all of them had 8(14)-ene group except two, which possessed 8(14)-seco-skeleton [7][8]. Compounds **1** and **2** had novel HO–C(9) or HO–C(8) group, and B-nor-framework, which were relatively rare even in conventional sterols. Besides from the genus *Theonella*, only one 4-methylidene sterol, but without other substituted features of that from sponge *Theonella*, was isolated from the marine sponge *Clathria fasciculata* [15], which is questionable since its structure was identified only by LC/MS data. Based on our results and available literature, oxygenated 4-methylidene sterols and secosterols may be considered as ideal taxonomic markers for the genus *Theonella*, especially for the sponge *T. swinhoei*.

This work was financially supported by the National High Technology Research and Development Program of China (863 Project, No. 2006AA09Z423) and the National Natural Science Foundation of China (No. 20772154).

Experimental Part

General. HPLC: Waters 1525/2998 liquid chromatograph. CC: Sephadex LH-20 (Pharmacia) and YMC ODS-A ($50 \mu m$). Vacuum liquid chromatography (VLC): SiO₂ (200-300 mesh; Yantai, P. R. China); the fractions were monitored by TLC (HSGF 254; Yantai, P. R. China), and spots were visualized by heating SiO₂ plates sprayed with 10% H₂SO₄ in H₂O. M.p.: SGW X-4 melting-point apparatus; uncorrected. Optical rotations: Perkin-Elmer 341 polarimeter. NMR Spectra: Bruker AVANCE-600 spectrometer. ESI- and HR-TOF-ESI-MS spectra: Q-Tof micro YA019 mass spectrometer.

Animal Material. Specimen of *T. swinhoei* was collected around Yongxing Island and seven connected islets in the South China Sea in June 2007, and was identified by Prof. *Jin-He Li* (Institute of Oceanology, Chinese Academy of Sciences, P. R. China). A voucher sample (No. DS-TS01) was deposited with the Laboratory of Marine Drugs, Department of Pharmacy, Changzheng Hospital, Second Military Medical University, P. R. China.

Extraction and Isolation. The fresh sponges (3.5 kg, wet weight) were extracted with EtOH at r.t. The EtOH extracts were concentrated under reduced pressure to give 537 g of brown gum, which was partitioned between AcOEt and H₂O to afford 216 g of AcOEt-phase extract. The AcOEt-phase extract was partitioned between MeOH/H₂O 9 :1 and petroleum ether (PE) to afford 170 g of PE-phase extract. The MeOH/H₂O phase was diluted to 3 :2 with H₂O and extracted with CH₂Cl₂ to give 15 g of CH₂Cl₂-phase extract. This extract was subjected to VLC (SiO₂; CH₂Cl₂/MeOH 50 :1, 20 :1, 15 :1, 10 :1, 5 :1, and 2 :1) to afford ten fractions; *Frs. 1–10.* The *Fr. 4* (750 mg) was subjected to chromatography repeatedly on *Sephadex LH-20* and SiO₂ to give compound **3** (18.5 mg). *Fr. 5* (250 mg) was subjected to chromatography repeatedly on *Sephadex LH-20* and *YMC ODS-A* (50 µm), and further purified by HPLC (*YMC-Pack ODS-A C18*, 5 µm, 10 × 250 mm, 1.5 ml/min, UV detection 210 nm) with MeOH/H₂O 90 :10 to yield pure compounds **1** (5.6 mg) and **2** (2.5 mg).

 9α -Hydroxy-15-oxoconicasterol (=(3 β ,24R)-3,9-Dihydroxy-4-methylideneergost-8(14)-en-15-one; **1**). Colorless needles (CHCl₃). M.p. 209–211°. [α]₁₉¹⁹ = +221 (c = 0.100, CHCl₃). ¹H- and ¹³C-NMR: *Table*. HR-TOF-ESI-MS: 465.3340 ($C_{29}H_{46}NaO_3^+$; calc. 465.3345).

8β-Hydroxy-B-norconicasta-6α-aldehyde (=(3R,3aR,5bS,8S,10R,10aR)-3-[(2R,5R)-5,6-Dimethylheptan-2-yl]hexadecahydro-8,10a-dihydroxy-3a,5b-dimethyl-9-methylidenecyclopenta[a]fluorene-10-carbaldehyde; **2**). Colorless needles (CHCl₃). M.p. 128–130°. [α]₁₉¹⁹ = +109 (c=0.125, CHCl₃). ¹H- and ¹³C-NMR: Table. HR-TOF-ESI-MS: 467.3503 (C₂₉H₄₈NaO[±]₃; calc. 467.3501).

 7α -Hydroxyconicasterol (= (3β , 7α ,24R)-4-Methylideneergost-8(14)-ene-3,7-diol; **3**). White powder. ¹H- and ¹³C-NMR: Table. ESI-MS: 451.36 ($[M + Na]^+$), 467.35 ($[M + K]^+$), 879.71 ($[2M + Na]^+$).

REFERENCES

- J. Tanaka, M. Kuniyoshi, C. Tanaka, H. H. Issa, W. Balansa, M. Otsuka, W. P. Githige, T. Higa, Pure Appl. Chem. 2005, 77, 83.
- [2] J. Kobayashi, M. Ishibashi, Stud. Nat. Prod. Chem. 2000, 23, 185.
- [3] A. Qureshi, D. J. Faulkner, J. Nat. Prod. 2000, 63, 841.
- [4] E. Kho, D. K. Imagawa, M. Rohmer, Y. Kashman, C. Djerassi, J. Org. Chem. 1981, 46, 1836.
- [5] M. Kobayashi, K. Kawazoe, T. Katori, I. Kitagawa, Chem. Pharm. Bull. 1992, 40, 1773.
- [6] Y. Inouye, Y. Sugo, T. Kusumi, N. Fusetani, Chem. Lett. 1994, 23, 419.
- [7] Y. Sugo, Y. Inouye, N. Nakayama, Steroids 1995, 60, 738.
- [8] A. Umeyama, N. Shoji, M. Enoki, S. Arihara, J. Nat. Prod. 1997, 60, 296.
- [9] N. Bross-Walch, T. Kühn, D. Moskau, O. Zerbe, Chem. Biodiversity 2005, 2, 147.
- [10] H. Eggert, C. L. VanAntwerp, N. S. Bhacca, C. Djerassi, J. Org. Chem. 1976, 41, 71.

- [11] J. L. C. Wright, A. G. McInnes, S. Shimizu, D. G. Smith, J. A. Walter, D. Idler, W. Khalil, Can. J. Chem. 1978, 56, 1898.
- [12] M. Kobayashi, J. Chem. Soc., Perkin Trans. 1 1995, 33.
- [13] T. S. Kaufman, Can. J. Chem. 1988, 66, 3128.
- [14] M. Tsuda, E. J. Parish, G. J. Schroepfer Jr., J. Org. Chem. 1979, 44, 1282.
- [15] S.-M. Zhou, K. Zhou, D.-J. Xiao, Nat. Prod. Res. Devel. 2005, 17, 428.

Received August 30, 2009